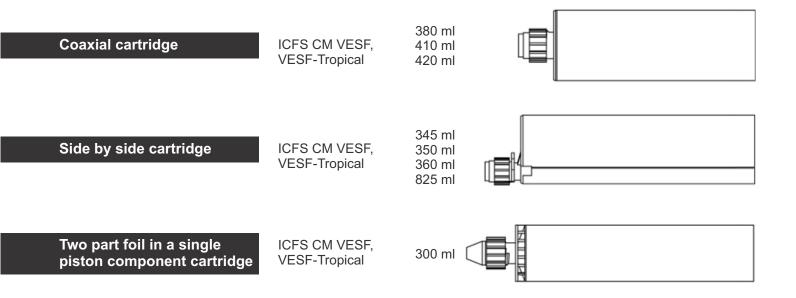
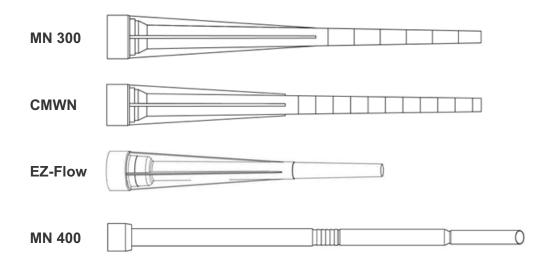
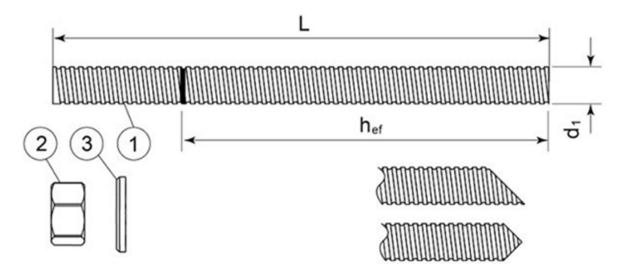

CM350/420VESF

Technical Datasheet for galvanised or stainless steel bonded anchor


Threaded rod

Reinforcing bar


Technical Datasheet - Indo Construction Fastening Systems


Marking of the mortar cartridges

Identifying mark of the producer, Trade name, Charge code number, Storage life, Curing and processing time

Mixing nozzle

Threaded rod M8, M10, M12, M16, M20, M24

Standard commercial threaded rod with marked embedment depth

Part	Designation	Material
Steel,	zinc plated \geq 5 µm acc. to EN ISO 4042 or Hot-dip galvanized \geq 40 µm acc. to EN ISO 146 zinc diffusion coating \geq 15 µm acc. to EN 13811	
1	Anchor rod	Steel, EN 10087 or EN 10263 CAS 5.8, CAS 8.8, CAS 10.9* EN ISO 898-1
2	Hexagon nut EN ISO 4032	According to threaded rod, EN 20898-2
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod
	Stainless steel	
1	Anchor rod	CAS A2-70, CAS A4-70, CAS A4-80 EN ISO 3506
2	Hexagon nut EN ISO 4032	According to threaded rod
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod
	High corrosion resistant steel	
1	Anchor rod	CAS HCR, CAS UHCR EN 10088-1
2	Hexagon nut EN ISO 4032	According to threaded rod
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod

^{*}Galvanized rod of high strength are sensitive to hydrogen induced brittle failure

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25

Standard commercial reinforcing bar with marked embedment depth

Produc	Bars and de	-coiled rods			
Cla	В	С			
Characteristic yield stre	ngth f _{yk} or f _{0,2k} (MPa)	400 t	o 600		
Minimum value	≥ 1,08	≥ 1,15 < 1,35			
Characteristic strain at ı	≥ 5,0	≥ 7,5			
Benda	ability	Bend / Rebend test			
Maximum deviation fromnominal mass (individual bar) (%)	/ 0				
Bond: Minimum relative rib area, f _{R,min}	1	040 056			

Anchorages subject to:

• Static and quasi-static load.

Base materials

- Uncracked concrete.
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206-1:2000-12.

Temperature range:

- -40°C to +80°C (max. short. term temperature +80°C and max. long term temperature +50°C) Use conditions (Environmental conditions)
- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel).
- •(X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note:

Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Concrete conditions:

- •I1 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- I2 installation in water-filled (not sea water) and use in service in dry or wet concrete

Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.

Installation

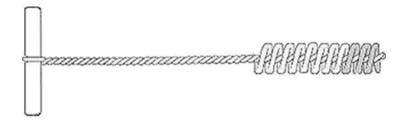
- Hole drilling by hammer drilling, dustless drilling or diamond core drilling mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Installation direction:

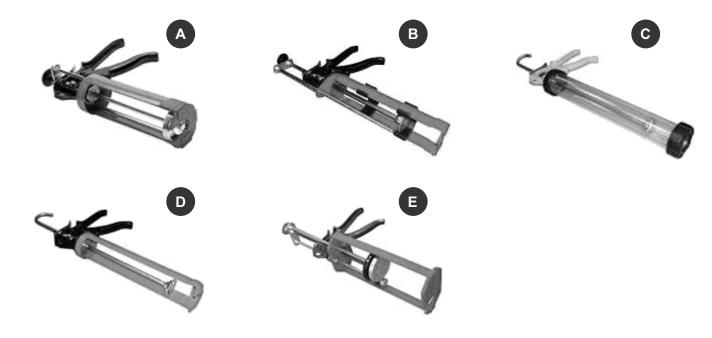
•D3 – downward and horizontal and upwards (e.g. overhead) installation

HDB – Hollow Drill Bit System

Heller Duster Expert hollow drill bit


- SDS-Plus ≤ 16mm
- SDS-Max ≥ 16mm

Class M vacuum

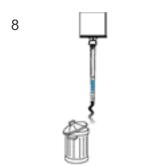

• Minimum flow rate 266 m³/h (74 l/s

Cleaning brush

Applicator gun

Applicator gun	Cartridge							
Α	Coaxial	380ml 420ml						
В	Side by side	345ml 360ml						
С	Foil capsule	300ml						
D	Foil capsule	300ml						
E	Side by side	825ml						

SOLID SUBSTRATE INSTALLATION METHOD


- 1. Using the SDS hammer drill (HD) in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.
- 2. Select the correct air lance, insert to the bottom of the hole, and depress the trigger for 2 seconds. The compressed air must be clean and free from water and oil, with a minimum pressure of 90 psi (6 bar). A manual pump may be used for certain diameters and depths; check the approval document. Perform the blowing operation twice.
- 3. Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.
- 4. Repeat step 2 (blowing operation x2)
- 5. Repeat step 3 (brushing operation x2)
- 6. Repeat step 2 (blowing operation x2)
- 7. Select the most appropriate static mixer nozzle, checking that the mixing elements are present and t for purpose. Never modify the mixer. Attach the mixer nozzle to the cartridge. Check the dispensing tool is in good working order. Place the cartridge into the dispensing tool.
- 8. Extrude some resin to waste until an even coloured mixture is achieved. The cartridge is now ready for use.
- 9. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately 3 full and remove the nozzle from the hole.
- 10. Select the steel anchor element ensuring it is free from oil or other contaminants, and mark with the required embedment depth. Insert the steel element into the hole using a back and forth twisting motion to ensure complete cover, until it reaches the bottom of the hole. Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.
- 11. Clean any excess resin from around the mouth of the hole.
- 12. Refer to the working and loading times within the tables to determine the appropriate cure time.
- 13. Position the fixture and tighten the anchor to the appropriate installation torque. Do not over-torque the anchor, as this could adversely affect its performance.

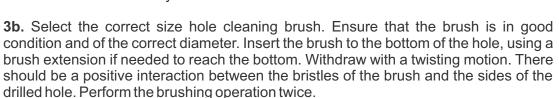
DEEP EMBEDMENT & OVERHEAD INSTALLATION METHOD

1a. Perform steps 1-8 under "solid substrate installation method".

2a.Attach the correct diameter and length extension tube to the nozzle. Select the correct diameter resin stopper for the application, then push and screw the extension tube into the resin stopper. This is held in place with a coarse internal thread. The resin stopper is a reusable accessory.

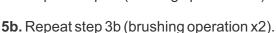
3a. Push the resin stopper and extension tube to the back of the drill hole.

4a. Ensure the extension tube is angled to allow free movement of the resin stopper as the resin is extruded.


5a. Continue from step 10 under "solid substrate installation method".

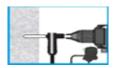
DIAMOND CORE DRILLING

1b. Using a diamond core drill (DD) and following the manufacturer's instructions, drill the specified diameter hole to the correct embedment depth then remove the concrete core.



2b. Starting from the back of the hole, flush with pressurised water a minimum of two times and until there is only clean water.

4b. Repeat step 2b (flushing operation x2).


6a. Using the correct air lance and starting from the back of the hole and withdrawing, perform a minimum of two blowing operations and ensure that the hole is clear of debris and excess water.

7a. Continue from step 7 under "solid substrate installation method"

DUSTLESS DRILLING

1c. Using the specified hollow drill bit (HDB) and vacuum system and following the manufacturer's instructions, drill the specified diameter hole to the correct embedment depth. Ensure that the minimum vacuum specifications are met and that the vacuum is turned on.

2c. The hole should be inspected to ensure the system has worked correctly. If the hole is clear of dust and debris, no further cleaning is required.

3c. Continue from step 7 under "solid substrate installation method".

Table B1:

Installation parameters of threaded rod

Sizes			M8	M10	M12	M16	M20	M24
Nominal drill hole diameter	$\operatorname{Ød}_{\scriptscriptstyle{0}}$	[mm]	10	12	14	18	22	26
Diameter of cleaning brush	d _b	[mm]	14	14	20	20	29	29
Torque moment	max T _{fix}	[Nm]	10	20	40	80	150	200
Depth of drill hole for h _{ef,min}	$h_0 = h_{ef}$	[mm]	64	80	96	128	160	192
Depth of drill hole for h _{ef,max}	$h_0 = h_{ef}$	[mm]	96	120	144	192	240	288
Minimum edge distance	\mathbf{C}_{min}	[mm]	35	40	50	65	80	96
Minimum spacing	S_{min}	[mm]	35	40	50	65	80	96
Minimum thickness of member	$h_{\scriptscriptstyle min}$	[mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} +	2d ₀		

Table B2:

Installation parameters of rebar

Sizes			Ø8	Ø10	Ø12	Ø16	Ø20	Ø24
Nominal drill hole diameter	$\operatorname{Ød}_{\scriptscriptstyle{0}}$	[mm]	12	14	16	20 22*	25	30* 32
Diameter of cleaning brush	$d_{\scriptscriptstyle b}$	[mm]	14	14	19	22	29	40
Manual pump cleaning				$h_{\rm ef}$	< 300 n	nm		
Depth of drill hole for h _{ef,min}	h _{ef}	[mm]	60	60	70	80	90	100
Depth of drill hole for h _{ef,max}	h _{ef}	[mm]	160	200	240	320	400	480
Depth of drill hole	h _o	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5
Minimum edge distance	C _{min}	[mm]	40	40	50	70	80	100
Minimum spacing	S _{min}	[mm]	40	40	50	70	80	100
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30	mm ≥ 1	00 mm		h _{ef} + 2d _o	

^{*} Only for hammer and dustless drilling

Table B3 .1:

Minimum curing time ICFS CM VESF

Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
min +5	18	min +5	145
+5 to +10	10	+5 to +10	145
+10 to +20	6	+10 to +20	85
+20 to +25	5	+20 to +25	50
+25 to +30	4	+25 to +30	40
+30	4	+30	35

Table B3. 2:

Minimum curing time ICFS CM VESF

Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
min +10	30	min +10	5 Hours
+10 to +20	15	+10 to +20	3 Hours
+20 to +25	10	+20 to +25	145
+25 to +30	7.5	+25 to +30	85
+30 to +35	5	+30 to +35	50
+35 to +40	3.5	+35 to +40	40
+40 to +45	2.5	+40 to +45	35
+45	2.5	+45	12

T work is typical gel time at highest temperature

T load is set at the lowest temperature

Table C1:

Design method EN 1992-4 Steel failure - Characteristic values of resistance to tension load of threaded rod

Steel fa	Steel failure – Characteristic resistance							
Sizes			М8	M10	M12	M16	M20	M24
CAS 5.8	$N_{Rk,s}$	[kN]	18	29	42	79	123	177
Partial safety factor	$\gamma_{\sf Ms}$	[-]			1	.5		
CAS 8.8	$N_{Rk,s}$	[kN]	29	46	67	126	196	282
Partial safety factor	$\gamma_{\sf Ms}$	[-]			1	.5		
CAS 10.9	$N_{Rk,s}$	[kN]	37	58	84	157	245	353
Partial safety factor	$\gamma_{\sf Ms}$	[-]			1	.4		
CAS A2-70, CAS A4-70	$N_{Rk,s}$	[kN]	26	41	59	110	172	247
Partial safety factor	Y _{Ms}	[-]			1	.9		
CAS A4-80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282
Partial safety factor	Y _{Ms}	[-]			1	.6		
CAS HCR	$N_{Rk,s}$	[kN]	26	41	59	110	172	247
Partial safety factor	Y _{Ms}	[-]	1.5					
CAS UHCR	$N_{Rk,s}$	[kN]	26	41	59	110	172	247
Partial safety factor	γ_{Ms}	[-]			1	.9		

Table C2:

Design method EN 1992-4

Steel failure - Characteristic values of resistance to tension load of rebar

Steel failure – Characteristic resistance									
Sizes		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25		
Rebar BSt 500 S	$N_{Rk,s}$	[kN]	28	43	62	111	173	270	
Partial safety factor	Yms	[-]	1.4						

Table C3:

Design method EN 1992-4

Characteristic values of resistance to tension load of threaded rod

	Hammer drilling, Dustless drilling								
Combined pullout and concrete cone failure in uncracked concrete C20/25									
Sizes				М8	M10	M12	M16	M20	M24
Characteristic bond resistance	e in un	cracked o	concrete	for a w	orking	life of 5	0 years	and 100) years
Dry, wet concrete and flooded	hole	$TR_{k,ucr}$	[N/mm ²]	10.0	8.0	9.0	9.5	8.5	8.5
Installation safety factor									
Dry, wet concrete		γinst	[-]			1	.2		
Hammer drilling - flooded hole		γinst	[-]	1.2					
Dustless drilling - flooded hole		γinst	[-]	1.4					
Factor for influence of sustaine	d load	$\psi^{\scriptscriptstyle 0}_{\ sus}$	[]			0	70		
for a working life 50 years			[-]			0.	78		
	C25	/30				1.06			
	C30	/37				1.12			
Factor for concrete	C35	5/45 Ψ _c	[-]			1.19			
T dotor for deficitoto	C40/					1.23			
	C45	/55				1.27			
	C50	/60				1.30			

Concrete cone failure								
Factor for concrete cone failure $k_{\text{ucr,N}}$ [-] 11								
Edge distance	S _{cr,N}	[mm]	1,5h _{ef}					

Splitting failure									
Sizes		М8	M10	M12	M16	M20	M24		
Edge distance	$\mathbf{C}_{cr,sp}$	[mm]		2.0h _{ef}		1.5h _{ef}			
Spacing	S _{cr,sp}	[mm]		$4.0h_{\rm ef}$			$3.0h_{\rm ef}$		

Table C4:

Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

	Hamm	er drilli	ng, Dust	less dr	illing				
Combined pullout	and con	crete co	one failu	re in un	cracke	d concr	ete C20	/25	
Sizes				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Characteristic bond resistance	e in unci	racked o	concrete	for a w	orking	life of 5	0 years	and 100) years
Dry, wet concrete and flooded	hole	$TR_{k,ucr}$	[N/mm ²]	8.5	8	8	7	7	5.5
Installation safety factor									
Dry, wet concrete		γinst	[-]			1	.2		
Hammer drilling - flooded hole		γinst	[-]			1	.2		
Dustless drilling - flooded hole		γinst	[-]			1	.4		
Factor for influence of sustaine T1: 24°C / 40°C, load for a wor life 50 years T2: 50°C / 80°C		$\psi^{^0}_{\text{ sus}}$	[-]				75 79		
	C25/3	30				1.0	04		
	C30/3	37				1.0	80		
Factor for concrete	C35/4	45 Ψ _°	[-]			1.	12		
	C40/5	50				1.	15		
	C45/5	55				1.	17		
	C50/6	60				1.	19		

	Concret	e cone	failure
Factor for concrete cone failure	$\mathbf{k}_{\text{ucr,N}}$	[-]	11
Edge distance	S _{cr,N}	[mm]	1,5h _{ef}

Splitting failure											
Sizes			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25			
Edge distance	C _{cr,sp}	[mm]	2 • h _{ef}								
Spacing	S _{cr,sp}	[mm]			2 •	C _{cr,sp}					

Table C5:

Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

	Di	iamon	d core d	rilling					
Combined pullout	and conci	rete co	one failu	re in ur	ncracke	d concr	ete C20	/25	
Sizes				M8	M10	M12	M16	M20	M24
Characteristic bond resistance	in uncra	cked (concrete	for a w	orking	life of 5	0 years	and 100) years
Dry, wet concrete and flooded h	ole	$TR_{k,ucr}$	[N/mm ²]	9	8.5	8.5	7.5	6.5	6.5
Installation safety factor									
Dry, wet concrete		γinst	[-]	1					
Flooded hole		γinst	[-]			1	.4		
Factor for influence of sustained T1: 24°C / 40°C, load for a work life 50 years T2: 50°C / 80°C	-	ψ^0_{sus}	[-]	0.83 0.82					
	C25/30)				1.	02		
	C30/37						04		
Factor for concrete	C35/45	Ψ_{c}	[-]				06		
	C40/50					1.0	-		
	C45/55						08		
	C50/60					1.0	09		

	Concrete cone failure									
Factor for concrete cone failure	$k_{\text{ucr,N}}$	[-]	11							
Edge distance	C _{cr,N}	[mm]	1,5h _{ef}							

Splitting failure											
Sizes			М8	M10	M12	M16	M20	M25			
Edge distance	$\mathbf{C}_{cr,sp}$	[mm]		$2.0h_{\rm ef}$			1.5h _{ef}				
Spacing	S _{cr,sp}	[mm]		$4.0h_{ef}$			3.0h _{ef}				

Table C6:

Design method EN 1992-4 Characteristic values of resistance to tension load of rebar

		Diamon	d core d	rilling					
Combined pullout	and cond	crete co	one failu	re in ur	ncracke	d concr	ete C20	/25	
Sizes				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Characteristic bond resistance	e in uncr	acked (concrete	for a w	orking	life of 5	0 years	and 100) years
Dry, wet concrete and flooded h	nole	$TR_{k,ucr}$	[N/mm ²]	8	8	7.5	7	6.5	6
Installation safety factor									
Dry, wet concrete		γinst	[-]	1					
Flooded hole		γinst	[-]			1	.4		
Factor for influence of sustaine T1: 24°C / 40°C, load for a wor life 50 years T2: 50°C / 80°C		$\psi^{^0}_{\text{ sus}}$	[-]	0.89 0.87					
	C25/3	0				1.	02		
	C30/3						04		
Factor for concrete	C35/4	Ψ_{c}	[-]				06		
	C40/5						07		
	C45/5						08		
	C50/6	0				1.0	09		

	Concrete cone failure										
Factor for concrete cone failure	$\mathbf{k}_{ucr,N}$	[-]	11								
Edge distance	$\mathbf{C}_{\mathrm{cr,N}}$	[mm]	1,5h _{ef}								

Splitting failure											
Sizes			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25			
Edge distance	$\mathbf{C}_{cr,sp}$	[mm]	2 • h _{ef}								
Spacing	$S_{cr,sp}$	[mm]			2 •	C _{cr,sp}					

Table C7:

Design method EN 1992-4

Characteristic values of resistance to shear load of threaded rod

Steel failure without lever arm **M8** M10 M12 M16 **M20 M24** Sizes Characteristic resistance CAS 5.8 [kN] 9 15 21 39 61 88 $V_{Rk,s}$ Partial safety factor [-] 1.25 γ_{Ms} [kN] 15 23 34 63 98 141 Characteristic resistance CAS 8.8 $V_{Rk,s}$ [-] 1.25 Partial safety factor γ_{Ms} [kN] 18 29 42 79 123 177 Characteristic resistance CAS 10.9 $V_{Rk,s}$ Partial safety factor 1.5 [-] γ_{Ms} Characteristic resistance [kN] $V_{Rk,s}$ 13 20 30 55 86 124 CAS A2-70, CAS A4-70 Partial safety factor [-] 1.56 γ_{Ms} [kN] 15 23 34 63 98 141 Characteristic resistance CAS A4-80 $V_{\mathsf{Rk},\mathsf{s}}$ Partial safety factor [-] 1.33 γ_{Ms} 13 20 30 55 86 124 [kN] Characteristic resistance CAS HCR $V_{Rk,s}$ Partial safety factor [-] 1.25 γ_{Ms} 13 20 30 55 86 124 Characteristic resistance CAS UHCR [kN] $V_{Rk,s}$ Partial safety factor [-] 1.56 γ_{Ms} Characteristic resistance of group of fasteners Ductility factor $k_7 = 1.0$ for steel with rupture elongation $A_5 > 8\%$

Steel failure with lever arm											
Sizes			M8	M10	M12	M16	M20	M24			
Characteristic resistance CAS 5.8	$M^0_{Rk,s}$	[N.m]	19	37	66	166	325	561			
Partial safety factor	$\gamma_{\sf Ms}$	[-]			1.:	25					
Characteristic resistance CAS 8.8	$M^0_{\text{Rk,s}}$	[N.m]	30	60	105	266	519	898			
Partial safety factor	γ_{Ms}	[-]			1	25					
Characteristic resistance CAS 10.9	$M^{\scriptscriptstyle 0}_{_{Rk,s}}$	[N.m]	37	75	131	333	649	1123			
Partial safety factor	γ_{Ms}	[-]			1.	50					
Characteristic resistance CAS A2-70, CAS A4-70	$M^{\scriptscriptstyle 0}_{_{Rk,s}}$	[N.m]	26	52	92	233	454	786			
Partial safety factor	Y _{Ms}	[-]			1.	56					
Characteristic resistance CAS A4-80	$M^0_{Rk,s}$	[N.m]	30	60	105	266	519	898			
Partial safety factor	Y _{Ms}	[-]			1.	33					
Characteristic resistance CAS HCR	$M^0_{Rk,s}$	[N.m]	26	52	92	233	454	786			
Partial safety factor	Y _{Ms}	[-]			1.:	25					
Characteristic resistance CAS UHCR	$M^0_{Rk,s}$	[N.m]	26	52	92	233	454	786			
Partial safety factor	Y _{Ms}	[-]			1.	56					
Concrete pry-out failure											
Factor for resistance to pry-out failure	K ₈	[-]			-	2					

Concrete edge failure											
Sizes			М8	M10	M12	M16	M20	M24			
Outside diameter of fastener	d_{nom}	[mm]	8	10	12	16	20	24			
Effective length of fastener	lf	[mm]			min (h	_{ef,} 8d _{nom})					

Table C8:

Design method EN 1992-4 Characteristic values of resistance to shear load of rebar

Steel failure without lever arm											
Sizes			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25			
Rebar BSt 500 S	$V_{Rk,s}$	[kN]	14 22 31 55 86								
Partial safety factor	\mathbf{y}_{Ms}	[-]			1.	.5					
Characteristic resistance of group of fasteners											
Ductility factor	k ₇ = 1	,0 for st	eel with	rupture	elongati	on A ₅ > 8	3%				

Steel failure with lever arm									
Sizes			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	
Rebar BSt 500 S	$M^0_{Rk,s}$	[N.m]	33	65	112	265	518	1013	
Partial safety factor	\mathbf{y}_{Ms}	[-]	1.5						
Concrete pry-out failure									
Factor for resistance to pry-out failure	K ₈	[-]	2						

Concrete edge failure									
Sizes			M8	M10	M12	M16	M20	M24	
Outside diameter of fastener	d_{nom}	[mm]	8	10	12	16	20	24	
Effective length of fastener	lf	[mm]	min (h _{ef,} 8d _{nom})						

Table C9:

Displacement of threaded rod under tension and shear load Hammer drilling, Dustless drilling

Anchor Sizes		M8	M10	M12	M16	M20	M24
Tension load							
δΝ0	[mm/kN]	0.03	0.03	0.03	0.02	0.02	0.02
δN∞	[mm/kN]	0.06	0.05	0.03	0.02	0.02	0.02
Shear load							
δV0	[mm/kN]	0.02	0.01	0.02	0.02	0.02	0.03
δV∞	[mm/kN]	0.04	0.02	0.03	0.03	0.03	0.05

Table C10:

Displacement of threaded rod under tension and shear load Diamond core drilling

Anchor Sizes		M8	M10	M12	M16	M20	M24
Tension load							
δΝ0	[mm/kN]	0.04	0.03	0.02	0.03	0.02	0.02
δΝ∞	[mm/kN]	0.11	0.09	0.06	0.05	0.04	0.03
Shear load							
δV0	[mm/kN]	0.02	0.01	0.02	0.02	0.02	0.03
δV∞	[mm/kN]	0.04	0.02	0.03	0.03	0.03	0.05

Table C11:

Displacement of rebar under tension and shear load Hammer drilling, Dustless drilling

Sizes		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Tension load		•					
δΝ0	[mm/kN]	0.04	0.04	0.04	0.03	0.03	0.03
δN∞	[mm/kN]	0.13	0.12	0.08	0.06	0.05	0.03
Shear load							
δV0	[mm/kN]	0.02	0.02	0.01	0.01	0.01	0.01
δV∞	[mm/kN]	0.03	0.03	0.02	0.02	0.01	0.01

Table C12:

Displacement of rebar under tension and shear load Diamond core drilling

Sizes		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25
Tension load							
δΝ0	[mm/kN]	0.04	0.04	0.04	0.04	0.04	0.04
δN∞	[mm/kN]	0.12	0.09	0.07	0.05	0.04	0.04
Shear load							
δV0	[mm/kN]	0.02	0.02	0.01	0.01	0.01	0.01
δV∞	[mm/kN]	0.03	0.03	0.02	0.02	0.01	0.01

A brand of Indo Spark Group Since 1978

INDO SPARK CONSTRUCTION SERVICES

CORPORATE OFFICE

198, E ward, Tararani Chowk, Near Geeta Mandir, Kolhapur - 416 003 (Mah.India) Toll Free: 1800 123 500 023 E-mail: mail@indospark.com

BRANCHES

Pune Mumbai

CHANNEL PARTNER

FOLLOW US

www.indospark.com